Семинарская и святоотеческая библиотеки |
Кенни:... Вы помните, что Джон Лукас утверждал, будто
разум не является машиной, поскольку если
мы возьмем любую машину, работающую по
алгоритму, мы сможем построить что-нибудь подобное формулировкам
Геделя, то есть мы сможем увидеть истинность этой формулы,
а машина не сможет. Когда Джон впервые
привел этот аргумент, один из его критиков, мне
кажется профессор Уитли, привел такой аргумент против:
"Возьмем такое выскаывание: Джон Лукас не может
логично высказать это утверждение", сказал он,
"очевидно, что любой другой человек, кроме Джона
Лукаса может увидеть что оно истинно, без всякой нелогичности. Но
также ясно и то, что Джон не может высказать это утверждение без
нелогичности, следовательно это показывает, что у всех нас есть некое
свойство, которого нет у него, что наделяет нас таким же превосходством
над ним, как и над компьютерами.... Лонге-Хиггинс:....[Лукас] полагал, что существует некоторое превосходство присущее людям, поскольку они всегда могут превзойти машину в Геделевском смысле, но не в явной форме. [Лукас утверждал], что машина никогда не смогла бы превзойти его. Но в самом деле, я могу написать программу, которая печатала бы вопрос [Уитли] к вам [Лукасу], и следовательно превзойти вас в Геделевском смысле. Кенни:... Хорошо, теперь он отброшен на позицию, которая означает, что разница между человеком и компьютером такая же, как между двумя людьми или двумя компьютерами. Лукас: Этого достаточно, хотя если бы любой компьютер вызывал бы у меня такую же неприязнь, как Кенни, тогда я мог бы быть уверен, что я именно таков, каким всегда себя представлял. Версия этого аргумента, высказанная собственно Пенроузом была разгромлена в обзоре его книги "Новый разум короля", сделанным знаменитым кибернетиком Джоном МакКарти, изобретателем знаменитого языка програмирования ЛИСП: Аргумент Пенроуза против ИИ... состоит в том, что каков бы ни был набор аксиом, на основе которых программируется работа компьютера, например теория Зермело-Франкла, человек может сформулировать Геделевское высказывание для такой системы, которое будет истинным, но недоказуемым внутри системы. Простейший ответ Пенроузу заключается в том, что для формулировки высказывания Геделевского достаточно однострочной программы на ЛИСП. Вообразите диалог между Пенроузом и компьютером с такой программой: Пенроуз: Скажи мне, какую логическую систему ты используешь и я приведу истинное высказывание, которое ты не сможешь доказать. Программа: Скажи мне, какую логическую систему ты используешь и я приведу истинное высказывание, которое ты не сможешь доказать. Пенроуз: Я не пользуюсь фиксированной логической системой. Программа: Я могу использовать любую систему, которая тебе нравится, хотя в основном я пользуюсь системой, основанной на варианте теории З-Ф, и происходящей из работы Давида МакАлестера 1980 г. Не напечатать ли справочное руководство? Ваше же предложение напоминает состязание, кто назовет число больше, причем я должен начать первым. У Пенроуза есть другой аргумент в пользу того, что человеческий разум не может быть компьютерной программой: он находит крайне сложным представить себе происхождение такой программы. Но сам же Пенроуз описывает этот механизм: Если мы предположим, что работа человеческого мозга… является просто реализацией некого очень сложного алгоритма, тогда мы должны спросить себя, как такой невероятно эффективный алгоритм мог возникнуть. Стандартный ответ, конечно - естественный отбор. По мере того, как существа, имеющие мозг эволюционировали, те из них, которые обладали более эффективным алгоритмом, могли иметь лучшие шансы на выживание, и следовательно, можно вообразить... некоторого рода естественный отбор, который направлен на приближение ко все более эффективным алгоритмам. Однако, Пенроуз считает, что "с этим трудно согласится", поскольку он полагает, что (1) любой отбор может действовать только на результат работы алгоритмов, но не на сами алгоритмы, и (2) "малые 'мутации' алгоритма скорее всего бесполезны, и трудно видеть, как путем случайных изменений может возникнуть серьезное улучшение." Проблема с обоими этими доводами в том, что если считать их истинными, то они могут опровергнуть всю современную теорию биологической эволюции. Все живые существа развиваются по программе, закодированной в молекулах ДНК. Эти ДНК-программы возникли именно таким способом, с которым Пенроузу "очень трудно согласиться". Биологический естественный отбор может на самом деле действовать только на целый организм, а не на программу в ДНК. Кроме того, мутация гена - это почти всегда изменение к худшему. И тем не менее, именно естественный отбор, действующий на такие мутации (и другие случайные изменения генофонда) создал человеческий генотип. Даже оставляя в стороне сложность человеческого разума, само человеческое тело - это замечательно устроенная машина, более сложная, более приспособленная к реальности (то есть способная выжить), и более замечательная, чем любое создание человеческого разума. Человеческое тело настолько прекрасно и сложно, что до тех пор пока Дарвин не доказал обратного, полагали, что оно сотворено непосредственно сверхчеловеческой Личностью, Самим Богом. Поскольку мы знаем, что естественный отбор, действующий на случайные мутации может быть, и на самом деле был более творческим, чем любой человеческий разум, то совершенно логично полагать, что человеческий разум может создавать идеи и сам быть созданным по такому же механизму. Пенроуз осознает, что его доводы против естественного механизма возникновения разума как программы также можно направить и против современной теории биологической эволюции: Для моего способа мышления все еще есть нечто таинственное в эволюции, с ее продвижением на ощупь к некой будущей цели. Вещи, как будто сами себя организуют, лучше, чем они "должны" это делать на основе эволюции слепого случая и естественного отбора. Может оказаться, что внешность весьма обманчива. В самом деле, внешность действительно обманчива. Алгоритмы человеческого разума и человеческой ДНК - оба созданы "эволюцией слепого случая и естественным отбором". Развитие случайных алгоритмов, например "генетических алгоритмов" демонстрирует, как обманчива может быть внешность. Генетические алгоритмы - это компьютерные программы для поиска решений по тому самому способу, с которым Пенроузу "трудно согласиться". И в среднем, такие алгоритмы находят решения более быстро, чем обычные детерминистические алгоритмы. В течение последних десяти лет, ученые очень разных дисциплин осознали, что случайность играет более существенную роль в измененениях, чем полагали прежде. Палеонтолог Давид Рауп представил убедительное свидетельство того, что исчезновение многих видов произошло благодаря непредсказуемым событиям, вроде столкновения с Землей гигантского метеорита (теперь этот механизм общепризнан в качастве объяснения для исчезновения динозавров 70 миллионов лет назад). Эволюционист Джон Мэйнард Смит еще более уверен в случайностях, чем Рауп: Если бы кто-нибудь попытался повторить всю эволюцию животных, начиная с раннего Кембрия (и чтобы удовлетворить Лапласа, сдвигая одно из животных на два фута влево), нет никакой гарантии, что результат будет тем же самым. Может не быть соревнования на суше, прогресса млекопитающих, и следовательно - не будет человека. Экономист Пол Крюгман произвел революционный переворот в теории международной торговли в 80-е годы, установив тот факт, что любая страна может стать главным производителем какого-нибудь товара, если ей посчастливится его впервые произвести. Например, нет никакой серьезной причины для того, чтобы считать Сиэттл лучшим местом на Земле для производства больших самолетов, хотя большинство таких самолетов в настоящее время производятся здесь. Наиболее вероятная причина этого в том, что поскольку расходы на исследования и проектирование этих машин так высоки, в мире может быть только один или два таких производителя, а Сиэттл - это просто то место, где оказался главный производитель. Логика технологии и экономики требует, чтобы производство больших самолетов было сконцентрировано где-нибудь, и Сиэттл просто оказался этим самым "где-нибудь". Короче говоря, я думаю, что Пенроуз серьезно недооценивает важность случайности в эволюции и человеческом творчестве. Но мой главный аргумент против пенроузовского отрицания ИИ - это ограничение Бекенштейна, согласно которому существует верхняя граница числа различных квантовых состояний, в которых может находится область конечного размера и энергии, и верхняя граница скорости, с которой могут происходить изменения этих состояний. Ограничение Бекенштейна будет обсуждаться позднее более подробно в главе 9 и в Приложении для ученых, так что сейчас я приведу только краткую формулировку. Согласно квантовой механике, любая физическая система исчерпывающе описывается ее квантовым состоянием. То есть система является своим квантовым состоянием. Физик Якоб Бекенштейн показал, что квантовые системы - а согласно физике, все что мы видим - это квантовые системы - имеют только ограниченное число состояний. В частности, человек может находится в одном из 10^10^45 состояний, и претерпевать 4*10^53 изменений в секунду. Эти числа, конечно, колоссальны, и если говорить о реальности, то скорее всего настоящие величины гораздо меньше, чем эти верхние пределы. Но они тем не менее конечны, и основаны на центральных законах квантовой механики. Таким образом доказано, что человек является конечным автоматом, и ничем кроме конечного автомата. Пенроуз - замечательный физик, естественно принимает достоверность ограничения Бекенштейна. Но это опровергает его утверждение о том, что человек не может быть машиной. Нет нужды говорить, что Пенроуз не согласен. Читатель этой книги может заметить, что я питаю огромное уважение к Роджеру Пенроузу. Он создал общую глобальную теорию относительности, главную область моих исследований. Да и основная идея Точки Омега построена на пенроузовской концепции "п-границы", как я буду говорить в главе 4. Рождер впервые сказал мне о своем несогласии в 1984, во время ланча на астрофизической конференции в Иерусалиме. На другой астрофизической конференции, на этот раз в Беркли, Калифорния в 1992, у нас была острая дискуссия с Роджером по поводу ИИ, снова за ланчем, но на этот раз к нам присоединился в качестве посредника П. Дэвис (Пол совершенно нейтрален в отношении ИИ, но склоняется в сторону скептицизма Роджера. Строгий постулат ИИ слишком "редукционистичен" для Пола). В наших дебатах Роджер соглашался с ограничением Бекенштейна, но утверждал, что теорема Геделя исключает детерминизм, и число возможных состояний, разрешенных ограничением Бекенштейна для человека слишком велико, для чисто случайной эволюции между состояниями, способной объяснить прогресс математики. Следовательно, настаивал Роджер, должно быть нечто, управляющее скачками между квантовыми состояниями помимо квантовой механики, и следовательно мы не являемся конечными автоматами. Я согласен с обоими доводами Пенроуза, но не принимаю его выводов. Мне все еще кажется, что разумная смесь случая и необходимости, постулируемая в современной эволюционной теории для объяснения создания человеческих существ, достаточна также для объяснения эволюции математики. Конечно это означает, что эволюционная история математики неизбежна не более, чем эволюция вида Homo Sapiens. В Теории Точки Омега прогресс неизбежен, но точная история этого прогресса - нет. Могут даже быть периоды отступления. Даже если бы и был неизвестный физике механизм, вызывающий переходы между состояниями, постулированный Пенроузом, двух ограничений Бекенштейна все еще достаточно, чтобы мы были конечными автоматами. Компьютерная теория описывает два радикально различных типа автоматов: конечные и бесконечные. Поскольку это различие является ключевым в этой книге - тот факт, что мы - конечные автоматы, позволяет доказать, что однажды бесконечный автомат воскресит нас, я опишу оба этих типа в деталях. Конечные автоматы ограничены в двух отношениях. Во первых, такой автомат имеет только конечное число состояний. Во вторых, время для такого автомата течет дискретно. На самом деле время может быть и непрерывным, но конечный автомат не видит этой протяженности. Его часы цифровые. Давно известно, что система зрения у человека работает по дискретному принципу. Фильм или видеозапись в действительности состоит из серии дискретных картинок, мелькающих на экране со скоростью 25 кадров в секунду. Когда эти неподвижные картинки появляются на экране кинотеатра или телевизора, то создается иллюзия движения. Но его нет. Видеомагнитофон, кинопроектор и ваш мозг - это конечные автоматы. Для всех конечных автоматов время идет целыми числами: t= 1, 2, 3... Конечные автоматы таким образом определяются значением их внутреннего состояния S(t) в данный момент времени t, и заданием правил, которыми они отвечают на любой внешний стимул. Поскольку автомат конечен, существует конечное число возможностей S(t), независимо от того, в какой момент времени это происходит: (s1, s2, s3....sN). В любой момент времени t, S(t) - одна из n возможностей. Ответный сигнал R(t+1) конечного автомата в момент времени t+1, помните, что время здесь идет дискретно, может зависеть только от от внешнего воздействия I(t) в момент времени t и внутреннего состояния S(t) автомата в момент t. Внешний сигнал I(t) может вызвать изменение внутреннего состояния автомата. Поскольку время течет дискретными интервалами, внутреннее состояние S(t+1) в момент t+1 может зависеть только от входного сигнала I(t) в момент t и внутреннего состояния S(t) в момент t. Конечный автомат полностью определяется заданием двух функций перехода S(t+1) и R(t+1). Каждая из этих функций определяется конечным числом входных значений, так что каждая может быть представлена в виде таблицы с конечным числом элементов. Например, рассмотрим простой автомат только с двумя состояниями, s1 и s2, и предположим, что он может воспринимать только два входных сигнала, которые мы обозначим числами 0 и 1. Пусть работа автомата будет заключаться в сохранении четности или нечетности колическтва единиц, которые он получает. Таблицы перехода выглядят следующим образом: состояние S(t) состояние S(t) S(t+1)¦ i1 i2 R(t+1)¦ i1 i2 ------+----------- ------+----------- входной0¦ i1 i2 входной 0 ¦ 0 1 сигнал 1¦ i1 i2 сигнал 1 ¦ 1 0 I(t) I(t) Эти таблицы показывают, что состояние S и сигнал на выходе R остаются теми же самыми если на входе 0, и изменяются, если на входе 1. Таким образом четное число единиц на входе не изменит состояния автомата. Это очень скучная машина, но все конечные автоматы вообще говоря похожи, разница только в размерах таблицы переходов. Поскольку человеческий мозг может кодировать 10^15 бит, и, как мы рассмотрим в главе 9, число возможных состояний в которых может находится мозг составляет 10^10^15, так что таблица переходов S(t) для человеческого мозга содержит 10^10^15 элементов. Теперь мы имеем точное определение конечного автомата, и ясно, что мы являемся именно такого рода машинами, даже если мистические пенроузовские квантовые скачки были бы реальными (Как я указывал не думаю, что такие силы существуют). Потому, что эффект любой такой силы может быть описан в точности как то, что называется "внешний сигнал". Можно доказать некоторые достаточно общие теоремы об ограничениях конечного автомата. Вот одна из них: любой конечный автомат в отсутствие внешних стимулов с необходимостью придет к состоянию, после которого он будет бесконечно повторять совершенную периодическую последовательность состояний. Доказательство этой теоремы простое. Поскольку число состояний, в которых может находиться автомат конечно, то после конечного числа шагов он вернется к тому состоянию, в котором уже побывал прежде. Но поскольку отсутствуют внешние сигналы, позволяющие определить в первый раз он пришел к этому состоянию, или уже побывал здесь, автомат будет снова и снова проходить через те состояния, где он уже побывал. Это первый пример того, что я называю Теоремами вечного возвращения. Такого рода теорема гласит, что физическая система должна возвращаться в свое предыдущее состояние вновь и вновь. Даже при наличии внешних стимулов, мы увидим, что конечный автомат, если он функционирует вечно, должен совершать такое вечное возвращение. Но, если внешний стимул не является периодическим, то последовательность состояний, в которые попадает конечный автомат тоже не будет периодической. Однако он обязательно будет возвращаться в свои предыдущие состояния. Конечный автомат, безусловно, очень занудная машина. Бесконечные автоматы куда более интересны. Машина Тьюринга - это прототип всех бесконечных автоматов. Она состоит из конечного автомата (называемого головкой) который соединен с бесконечной бумажной лентой. (Здесь слово "бесконечная" означает "неограниченная" или "потенциально бесконечная" , а не "действительно бесконечная"). Машина Тьюринга показана на рис. II.1. Бумажная лента разделена на клетки одинакового размера. Головка может совершать только пять действий. Во-первых, она может записывать один из фиксированных символов, число которых конечно, на ту клетку, на которой она находится (двух символов, например 0 и 1 достаточно). Во-вторых, она может читать символы, написанные в данной клетке. В третьих, она может запоминать прочтенное (существует только конечное число вариантов, которые она может увидеть в клетке). В четвертых, она может стирать написанное в данной клетке (и заменять другим символом). В пятых, она может передвигать ленту в точности на одну клетку вправо или влево. Как и для всех конечных автоматов время является здесь дискретной величиной. Каждая из рассмотренных выше операций требует одной единицы времени. Головка действует как запоминающее устройство машины Тьюринга. Поскольку лента бесконечна, машина Тьюринга имеет возможности, оставляющие далеко позади любой конечный автомат. В частности, она способна симулировать любой конечный автомат. Поскольку таблица переходов для любого конечного автомата конечна, очевидно, что эти числа могут быть закодированы на ленте машины Тьюринга. Кроме того, эти числа могут быть закодированы таким образом, что машина Тьюринга может использовать их для расчета реакции любого конечного автомата на любой внешний стимул. В глубоком смысле, числа таблицы переходов, закодированные на ленте машины Тьюринга явлются конечным автоматом. Все, что может совершить реальный автомат с данной таблицей переходов, может совершить его цифровой двойник на ленте машины Тьюринга. "Автомат", который существует в виде чисел в машине Тьюринга (или другого компьютера) и который не является реальным физическим устройством, называется виртуальной машиной. Вирутальная машина, имеющая ту же таблицу переходов, что и машина в реальном мире, представляет собой совершенную компьютерную симуляцию машины реального мира. Такая симуляция называется эмуляцией. Большинство компьютерных симуляций, конечно же не являются эмуляциями. Сегодня могут быть эмулированы только самые примитивные машины, поскольку память компьютеров и скорость вычислений, необходимые для эмуляции могут быть очень большими. Но все конечные автоматы могут быть эмулированы машинами Тьюринга. Машины Тьюринга могут эмулировать другие машины Тьюринга. На самом деле существует единственная машина Тьюринга, называемая универсальной машиной Тьюринга, которая может эмулировать все машины Тьюринга, включая саму себя. Мы можем таким образом иметь иерархию машин, эмулирующих другие машины. Машина Тьюринга Т0 может быть реальной машиной, но внутри ее имеется виртуальная машина Т1, а внутри последней - виртуальная маштна Т2, которая в свою очередь кодирует машину Т3 и так далее. Эти уровни виртуальных машин внутри других виртуальных машин называются уровнями воплощения (имплементации). Очевидно, что машины более высоких уровней полностью исполняются в машинах низких уровней. Следовательно, с высокими уровнями ничего не произойдет, если одну или более машин низкого уровня заменить совершенно другими. Нужно лишь, чтобы замененные машины были бы способны эмулировать машины высоких уровней с той же самой скоростью. Как правило, для реальных компьютеров машины различных уровней не смешивают между собой, однако это сделано лишь для облегчения жизни программистам-людям, а не потому, что того требует математика если машина перенесена на более выскоий уровень воплощения, говорят, что она ПОДГРУЖЕНА, а если такой перенос происходит на более низкую ступень, то говорят, что машина ВЫГРУЖЕНА. Существует бесконечное число машин, которые полностью эквивалентны универсальной машине Тьюринга, и следовательно могут эмулировать любые другие машины. Десятки таких машин описаны в компьютерной литературе, но я ограничусь только двумя: компьютером биллиардных шаров и игрой жизни. Компьютер биллиардных шаров состоит из шариков, которые сталкиваются между собой и с упругими стенками, причем такие столкновения подчиняются стандартной ньютоновской механике. Шарики двигаются по бесконечной плоскости с постоянной скоростью, пока не столкнуться со стенкой или с другими шариками. Эта плоскость может быть разделена на клетки, а присутствие или отсутствие шарика в клетке можно рассматривать как 0 или 1 соответственно. Такое разделение на клетки эквивалентно бесконечной ленте в машине Тьюринга, шарики эквивалентны символам, которые головка записывает на ленте, а столкновения играют роль головки. Строгий анализ показывает, что существуют такие наборы шариков и стенок, с помощью которых можно вычислить все, что позволяет вычислить машина Тьюринга. Игра жизни - это простая компьютерная игра, изобретенная английским математиком Джоном Конвеем. Как и в случае биллиардного компьютера, имеется бесконечная плоскость, разделенная на клетки. Каждая клетка или пуста, или содержит единственную точку. При переходе от одной дискретной единицы времени к другой для изменений в каждой клетке есть лишь три возможности: 1) в пустую клетку ставится точка; 2) из клетки, содержавшей точку последняя удаляется; 3) точка остается в той клетке, где и была. Правило для выбора между этими тремя возможностями очень простое: каждая клетка граничит с восемью соседними. Точка будет добавлена в пустую клетку, если три из ее соседей содержат точки. если клетка уже содержит точку, она сохранит ее до тех пор, пока двое или трое ее соседей будут также содержать точки, иначе она удаляется. Пример поведения точечной структуры называемой глайдером, эволюционирующей в течение пяти временных шагов приведен ниже. Глайдер изменяет свою форму, но на пятом шаге он ее восстанавливает такой, как она была на первом, и вся система в целом оказывается перемещенной в новое место на плоскости. Создавая структуры, подобные глайдеру, в игре жизни можно симулировать и эмулировать любую машину, которую может эмулировать машина Тьюринга. Если вы понаблюдаете за такими примерами лет шестьдесят, станет совершенно ясно, что невозможно представить себе машину, способную сделать то, чего не может сделать универсальная машина Тьюринга. Это хорошо демонстрирует то, что такой машины не существует. Гипотеза о том, что такой машины не существует, или говоря другими словами, гипотеза о том, что универсальная машина Тьюринга (или ее эквивалент) может эмулировать любую машину называется тезисом Черча-Тьюринга. Обсуждавшаяся выше Проблема Остановки, также применима и к машине Тьюринга, и таким образом ни одна машина не может разрешить эту проблему. Тот факт, что многие машины являются универсальными ввел в заблуждение Джона Сирла, философа из Калифорнийского университета. Он выдвинул широко обсуждаемый аргумент против строгого постулата ИИ известный под названием эксперимента с китайской комнатой. Давайте вообразим, говорит Сирл, что я нахожусь в комнате, заполненой книгами, которые все вместе кодируют компьютерную программу, способную пройти тест Тьюринга, но на китайском языке. Мы знаем, что работа любой программы эквивалентна тому, что мы открываем некую книгу, читаем то, что в ней написано, стираем некоторые из этих записей, некоторые из них запоминаем, переходим к следующей книге и так далее. (Эта процедура представляет собой еще одну универсальную машину). Предположим, кто-то подсунул под дверь клочок бумаги, на котором написано что-то по китайски. Поскольку я (Сирл), не знаю китайского языка, для меня эти эта надпись - просто бессмысленные значки. Однако, следуя утверждениям приверженцев строгого постулата ИИ, я могу, следуя инструкциям в книгах (и соответственно модифицируя эти книги) сделать надпись на другом клочке бумаги, точно так же не имеющую для меня смысла, которая будет признана за корректную фразу на китайском теми китайцами, что находятся за дверью. Таким образом, обмениваясь этими бумажками, мы завяжем разговор, и люди за дверью, говорящие по китайски будут думать, что в комнате также находится китаец. Следовательно, говорит Сирл, я пройду тест Тьюринга на китайском. Если бы тест Тьюринга был корректным тестом на разумность, можно было бы заключить, что я понимаю китайский. Но я уже сказал ранее, что не понимаю по китайски. Следовательно, тест Тьюринга фундаментально ошибочен и поэтому мы видим, что "понимание" не является свойством компьютерных симуляций; ни один компьютер, как бы сложен он не был, не может думать. Я думаю, что фундаментально ошибочна основная предпосылка Сирла, а не тест Тьюринга. Человек не сможет вручную симулировать программу, способную пройти тест Тьюринга точно так же, как он не может допрыгнуть до Луны. Все мы знаем, что до Луны нельзя допрыгнуть, но это можно доказать, используя законы физики. Это очень простой расчет, который замечательно иллюстрирует, как физики могут доказывать физическую невозможность какого-либо процесса в принципе. Затем я проведу аналогичный расчет, чтобы показать, что симуляция вручную программы, проходящей тест Тьюринга, также физически невозможна, опровергая таким образом аргумент Сирла. Для того, чтобы достичь Луны, необходимо иметь скорость, достаточную для преодоления гравитационного поля Земли. Это так называемая вторая космическая скорость, около 11 километров в секунду. Чтобы развить такую скорость на дистанции в один метр - это типичная длина прыжка - нужно иметь ускорение в шесть миллионов g. Такое ускорение попросту расплющит человека. Даже космонавты, покидая Землю испытывают ускорение около 6 g. Большинство людей теряет сознание, если ускорение превысит 10 g. (Рекорд выносливости для человека составляет около 20 g). Кинетическая энергия человека весом в 50 кг, двигающегося со скоростью 11 километров в секунду, составит 760000 ккал. Поскольку в среднем человеку в день требуется около 2000 ккал, то эта энергия, затрачиваемая за десятую долю секунды составит его годовую потребность. Килограмм жира имеет пищевую энергетическую ценность 9290 ккал (белки и углеводы вполовину меньше), так что даже если прыгун весом в 50 килограмм будет полностью состоять из жира, эта энергия составит лишь 460000 ккал. Человек не может допрыгнуть до Луны. Но, конечно это ясно каждому и без вычислений. Менее очевидно, что так же невозможно вручную симулировать компьютерную программу, достаточно сложную, чтобы пройти тест Тьюринга. Причина неочевидности в том, что все когда-нибудь прыгали, но очень немногие пытались вручную симулировать программы. Если мои предыдущие оценки информационной емкости человеческого мозга как 10^15 бит корректны, то поскольку книга в среднем кодирует 10^6 бит (в этой книге немногим более 10^7 бит), для того, чтобы закодировать человеческий мозг может понадобится 100 миллионов книг. Для того, чтобы их хранить, понадобится 35 больших университетских библиотек. Из опыта мы знаем, что для того, чтобы получить доступ к какой-либо информации в собственной памяти, нам нужно порядка 100 секунд. Таким образом, чтобы вручную симулировать программу, проходящую тест Тьюринга, человеку понадобится снять с полок, просмотреть, и вернуть обратно на полку около 100 миллионов книг за 100 секунд. Если каждая книга весит около полукилограмма, и в среднем книга перемещается на один метр в процессе ее снятия с полки и возвращения обратно, тогда за 100 секунд понадобится истратить энергию в 3*10^19 джоулей; потребленная мощность составит 3*10^11 мегаватт. Поскольку обычно человек потребляет около 100 ватт, то потребуется энергия 3*10^15 человек, в миллион раз больше, чем все нынешнее население Земли. Обычно, крупная атомная электростанция дает 1000 мегаватт, так что для ручной симуляции программы потребуется энергия 300 миллионов таких электростанций. Как я и говорил выше, человек не может допрыгнуть до Луны и вручную симулировать программу, способную пройти тест Тьюринга. В действительности все сложнее. Пенроуз полагает, что возможно не потребуется всех ресурсов человеческого мозга, чтобы симулировать "единичное мыслительное явление". Однако в настоящее время уже известно, что для мышления требуется значительная часть ресурсов мозга, поскольку динамическое сканирование мозга размышляющего человека показывает, что по крайней мере 1% мозга, а возможно и больше, активируется в случае "единичного мыслительного явления". (Вспомните, что в моих оценках скорости вычислений в мозгу я полагал, что только от 1 до 10% мозга активны в данный момент времени). Динамическое сканирование мозга, выполняемое методом MRI (Magnetic Resonance Imaging) позволяет различать кровь в разной степени насыщенную кислородом в масштабе до 1 квадратного миллиметра поверхности мозга. Активные нервные клетки используют кислород быстрее, чем неактивные, и таким образом его убыль указывает на активность в какой-либо области. Поскольку такое сканирование не определяет электрическую активность, оно дает нижнюю границу размеров активного региона. По мере того, как мыслительная активность человека возрастает, так же растет и процент активной части в мозгу. Из этих экспериментов по сканированию мозга ясно, что прохождение теста Тьюринга требует ресурсов большей части мозга. Вычисления, которые я только что привел, предполагают, что компьютер будет работать последовательно, и нам понадобится один человек, чтобы вручную симулировать его работу. Но первый компьютер, который будет обладать достаточной вычислительной мощностью, чтобы пройти тест Тьюринга, несомненно будет параллельным устройством. Последовательная машина выполняет только одну инструкцию за один момент времени, в то время, как параллельная - много инструкций. В таком случае для реализации предложения Сирла потребуется все население Индии (800 миллионов человек). Это более возможная ситуация, но для того, чтобы приблизиться к мощности 10 миллиардов нейронов человеческого мозга потребуется все человечество планеты. Но это означает разрешение аргумента Сирла, поскольку очевидно, что человечество в целом может "знать" то, что не под силу одному человеку. Например, ни один человек не обладает достаточными знаниями, чтобы построить автомобиль. Это не означает просто собрать автомобиль из деталей. Нужно еще сделать эти детали, добывать руду и выплавлять металл. И все детали этих процессов нужно знать в точности, а не приблизительно. Ни один отдельно взятый человек не обладает такими знаниями, они доступны только всей человеческой расе, коллективу. Таким образом, совершенно естественно, что человечество (или население Индии) коллективно может говорить на китайском, даже если ни один из отдельных людей, моделирующих компьютерную программу вручную не может этого сделать. Аналогичная ситуация происходит и в мозгу - ни один отдельный нейрон не может думать, но интегрированные в целостный мозг, нейроны безусловно обладают этим свойством. Кроме того, 10-терафлопный компьютер, параллельный или последовательный, сможет произвести поиск в памяти объемом в 10^15 бит за 100 секунд, и затрачивая при этом мощность меньше чем киловатт. Так что мы можем уверенно полагать, что 10-терафлопный компьютер сможет выполнить программу, способную пройти тест Тьюринга. Сирл также полагал, что необходимые затраты энергии могут быть снижены путем интериоризации программы, проходящей тест Тьюринга. То есть, человек в китайской комнате "запоминает правила вычислений, китайские символы, и делает все вычисления у себя в голове". Запомнить содержимое 100 миллионов книг? Невозможно! Помимо собственных номеров книг, содержимое каждой книги состоит полностью из таблиц чисел, как мы помним. Даже человек с фотографической памятью должен затратить на одну книгу не менее часа, а поскольку в году немногим менее 10000 часов, запоминание всех книг потребует 10000 лет, если не считать времени на еду и сон. Повторим, что это не может быть сделано. Эксперимент с китайской комнатой Сирла требует от нас вообразить логически невозможное: обычный человек, выполняющий работу, которая не может быть им выполнена. Основной идеей Сирла в эксперименте с китайской комнатой является утверждение "Компьютер обладает синтаксисом, а не семантикой". То есть, все программы манипулируют символами в соответствиии с некоторыми формальными правилами (синтаксисом). Они не понимают того, что значат эти символы (семантика). Это верно, манипуляция символами сама по себе не требует понимания их значения. Однако, когда программа создается, она разрабатывается для конкретных условий, в которых определенные наборы символов будут приводить к тому, что физические устройства будут выполнять определенные действия. Например, 5546 может привести к тому, что клапан 46 будет открыт, если компьютерная программа обслуживает химический завод. То есть символ "5546" означает: "Открыть клапан 46". В других условиях, если я запущу программу для обслуживания химического завода на своем настольном компьютере, ничего не случится, если появится набор символов %%$^. Эти символы бессмысленны для моего настольного компьютера. (Откуда взялось это %%$^? - спросите вы - Мы говорили о 5546! Вот откуда - %%$^, это то, что получится, если вы напечатаете 5546, держа нажатой клавишу верхнего регистра. Небольшое изменение условий превратило значимые символы в бессмыслицу). Суммируя, можно сказать, что значение символов возникает из соединения их с окружающей средой через физические устройства компьютера, а не из манипулирования с ними. Программа, выполняемая на компьютере, соединенном с химическим заводом не просто симулирует контроль производства, а делает это на самом деле. Если программа, способная пройти тест Тьюринга, будет работать на 10-терафлопном компьютере в китайской комнате, и те тексты, которые компьютер будет читать и печатать, будут иметь смысл на китайском языке, мы сможем заключить, что эта программа прежде работала в условиях, которые позволяли ей взаимодействовать с людьми, и выучить значения слов по крайней мере в одном из человеческих языков. Разумная программа может выучивать значения слов точно так же, как это делают дети. У меня двое дочерей, в 1993 году им было 4 и 7 лет, и я видел, как они учились говорить. Сначала они использовали слова не совсем правильно, но по мере того, как они контактировали с другими людьми, с окружающим миром, прислушиваясь к тому, что говорят другие, их словоупотребление становилось более правильным и словарный запас рос. Мои дети уже выучили, и учат до сих пор, то, что обозначают слова в реальном мире. Они учатся тому, что значат те звуки, которые они издают. То же самое может быть и с программой, проходящей тест Тьюринга. Цель программы, создаваемой на основе строгого постулата ИИ в том, чтобы она, будучи исполняемой на компьютере, который взаимойдествует с реальным миром, была бы способна продвинуть саму себя к разумности. То же самое делают и мои дети - они создают сами себя, и я наблюдаю за этим. Когда им было год от роду, они не могли пройти тест Тьюринга, а теперь они сделают это с легкостью. Таким образом, ошеломляюще очевидно, что в ближайшие тридцать лет мы сможем создать машину, которая будет так же разумна, как и человек, а может быть и более. Должны ли мы позволить этому свершиться? Я полагаю, что те аргументы против этого шага, которые обращены к ученым, занимающимся данной проблемой, являются близорукими, это продукт страха и невежества, а не рационального размышления. Мы сами являемся "разумными машинами". Существует мощный практический аргумент в пользу создания разумных машин. Такие машины повысят наше благосостояние, даже если они будут нас превосходить. Одной из наиболее твердо доказанных теорем экономики является Теория Сравнительной Выгоды, которая оправдывает свободную торговлю. Она говорит, что если два индивидуума, или страны, или расы, производят продукты с разной эффективностью, для них обоих выгоден свободный торговый обмен, даже если одна из сторон делает все лучше, чем другая. Это применимо к отношениям между людьми и разумными машинами так же, как и к торговле между странами. Конечно, для людей было бы неразумным пытаться поработить разумные машины или уничтожить их. В романе о Франкенштейне, созданном Мери Шелли, "монстр" был разумнее любого человека, и изначально он был настроен по дружески. Он начал атаковать людей только после того, как они первые атаковали его. Но главной причиной, по которой мы должны создать разумные машины, является то, что без их помощи человечество обречено. С их же помощью мы сможем выжить и будем жить вечно. Чтобы понять это, давайте сначала посмотрим, как они могут помочь нам колонизовать космическое пространство. КАК ПОСТРОИТЬ АВТОМАТИЧЕСКИЙ КОСМИЧЕСКИЙ ЗОНД. Стратегию колонизации космоса разумнее разрабатывать таким образом, чтобы максимизировать число колонизованных звездных систем и минимизировать затраты, обусловленные существующим уровнем технологий. Такие затраты могут быть сведены к минимуму двумя способами: во-первых, использовать максимально передовую технологию, чтобы снизить насколько возможно расходы на исследования и разработки; во-вторых, максимально использовать те ресурсы, которые нельзя больше ни на что употребить. Ресурсы, доступные в необитаемых звездных системах не могут быть использованы ни для каких других человеческих нужд (или нужд дургих живых существ), кроме строительства космических аппаратов; в самом деле, иатерилы, которые нельзя использовать вообще не имеют стоимости по определению. Следовательно, любая оптимальная стратегия колонизации должна максимально использовать материалы, доступные в других звездных системах. При нынешнем уровне развития технологии такое использование не может быть интенсивным, однако при уровне компьютерных технологий, рассмотренных в предыдущей части, эти бесполезные в других отношениях ресурсы могут полностью окупить программу колонизации. То, что нам нужно - это самовоспроизводящийся конструктор: машина, способная сделать любое устройство при наличии материалов и программы сборки. По определению, она может создать и собственную копию. Универсальный конструктор аналогичен универсальному компьютеру, обсуждавшемуся в предыдущей части: универсальный компьютер можит вычислить все, что может быть вычислено, универсальный конструктор может сконструировать все, что возможно сконструировать. Тьюринг показал, как можно построить универсальный компьютер, фон Нейман разработал основные принципы создания универсального конструктора. Специальное исследование НАСА в 1980 г. показало, что при наличии средств универсальный робот-конструктор может быть построен в ближайшие 20 лет. Как и универсальные компьютеры, все типы машин являются универсальными конструкторами: в частности, человек - это универсальный коструктор, существующий в условиях Земли. Таким образом, программа колонизации космоса с участием пилотируемых космических кораблей - это лишь частный случай колонизации с применением универсальных конструкторов. Полезным грузом зондов, запускаемых к другим звездным системам, должен быть универсальный конструктор с человеческим уровнем интеллекта, обозначаемый далее термином "зонд фон Неймана", оснащенный тормозным устройством и двигателем для перемещения в пространстве, последним может служить электрический реактивный двигатель или солнечный парус. Зонду фон Неймана будет дана задача поиска конструкционных материалов и создания из них собственных копий вместе с двигательными установками. Исходя из наблюдений в нашей солнечной системе, других звездных системах и сущствующих теорий их формирования, такие материалы должны быть доступны практически везде в форме астероидов, метеоритов, комет, и другого мусора, оставшегося после образования звездной системы. Последние наблюдения огромных количеств пыли вокруг Веги и других звезд показывают, что такие материалы имеются в любой звездной системе. Например, состав астероидов очень различен; многие из них являются огромными кусками никель-железных сплавов, в то время как другие состоят из углеводородов. Те копии зонда фон Неймана, которые будут им созданы, должны быть запущены в направлении ближайших звезд. Например, мы скорее всего пошлем сначала зонд к Проксиме Центавра. Тогда его копии могут быть запущены к Альфа Центавра (звезда, ближайшая к Проксиме, иногда последнюю рассматривают как внешнего члена системы Альфа Центавра), а также к Сириусу, Эпсилон Эридана, Тау Кита и Проциону. Когда новые зонды достигнут этих звезд, процесс будет повторен снова и снова, пока зонды не достигнут всех звезд в Галактике. Экспоненциальный рост экспансии зондов фон Неймана показан на рис. II.2. Когда достаточное число копий будет построено, можно будет запрограммировать зонд фон Неймана для исследования звездной системы, в которой он находится, и отправки полученной информации обратно на Землю. Его также можно запрограммировать для проведения научных исследований, которые слишком дороги или опасны для проведения их в нашей солнечной системе. Зонд фон Неймана мог бы также заселить звездную систему людьми и другими формами земной жизни. Даже если в системе не окажется планет - это может быть система двойной звезды, содержащая только астероиды и их обломки, как например система Альфа Центавра - зонд фон Неймана может быть запрограммирован таким образом, чтобы превратить некоторые из доступных ему материалов в колонию О'Нейла, самоподдерживающуюся человеческую колонию в космосе, которая располагается не на планете, а на космической станции. Обитателей такой колонии может синтезировать зонд фон Неймана. Вся информация, необходимая для создания человеческого существа или любой другой земной формы жизни, содержится в генах одной единственной клетки этой живой формы. Таким образом, когда мы научимся синтезировать отдельные клетки (некоторые биологи говорят, что это произойдет в ближайшие 30 лет; главным в этом направлении является проект Геном Человека), тогда мы сможем научить зонд фон Неймана синтезировать оплодотворенные яйцеклетки любого земного вида. Для семян растений или птичьих яиц достаточно будет синтезировать единственную яйцеклетку, чтобы в скором времени получить взрослые формы этих организмов. Что касается людей, то оплодотворенные яйцеклетки нужно будет поместить в искуственную матку (такие технологии уже разрабатываются сейчас), и в этом случае люди появятся в данной звездной системе уже через девять месяцев после этого. Этих детей будут растить роботы-няньки, а когда они вырастут, то смогут произвести своих детей традиционным способом. Таким образом проблема межзвездного путешествия может быть сведена к проблеме транспортировки самовоспроизводящегося универсального конструктора к другой звездной системе. Это может быть сделано уже при имеющемся уровне развития ракетных технологий. Ряд экспертов в этой области утверждали в 60-е годы, что используя тяготение Юпитера для ускорения в моменты его сближения с Солнцем и добавив ускорения в момент наибольшего сближения, скорость, с которой космический аппарат покинет солнечную систему достигнет 90 км/сек (около 3*10^-4c, где с - скорость света, 3*10^5 км/сек) даже для ракет с химическими двигателями. Вояждер, который миновал Непутн несколько лет назад имеет в данный момент скорость около 0,6*10^-4 с. С такой скоростью он достигнет ближайших звезд через 10^4 - 10^5 лет. Зонды с очень малой массой рассматриваются сегодня как стандарт, это делает их гораздо дешевле в сравнении с теми возможностями, которые имел Вояджер. Программа "Быстрый пролет Плутона", запуск для которой намечен на февраль 1999 г. имеет в основе зонд массой 110 кг. Этому аппарату стоимостью в 400 миллионов долларов потребуется семь лет, чтобы достичь Плутона, по сравнению с двадцатью годами для Вояджера. Пройдя Плутон, зонд будет иметь скорость около 20 км/сек (около 0,6*10^-4 c), это означает, что он покроет дистанцию в пять световых лет - среднее расстояние между звездами в окресностях нашей солнечной системы за 80000 лет. Самая ближайшая звезда, Проксима Центавра, находится на удалении в 4,3 световых года. Она является частью тройной звездной системы (три звезды, связанные вместе силами взаимного тяготения), и по всей видимости не имеет планет, подобных Земле, хотя по-видимому в данной системе находятся астероиды и их обломки, оставшиеся после ее формирования. Две ближайшие отдельные звезды, имеющие энергию свечения подобно солнечной, - это Тау Кита (11,3 световых года) и Эпсилон Эридана (10,7 световых лет). Описываемый зонд, если его направить к Проксиме Центавра, достигнет ее за 70000 лет. Так что если бы мы могли создать устройства, способные выдержать десятки тысяч лет путешествия, и если бы мы были очень очень терпеливыми, мы могли бы запустить межзвездный зонд прямо сейчас. Но используя современную компьютерную технологию мы можем сделать лучше. Хитрость состоит в том, чтобы делать устройства очень маленькими, используя нанотехнологию, чтобы заставить каждый атом в космическом аппарате выполнять полезную функцию. (Нанотехнология - это технология в масштабе отдельных атомов, которые имеют размеры около нанометра. Мы знаем, что такая технология осуществима, и сейчас частные компании тратят сотни миллионов долларов на ее развитие). Давайте вообразим зонд массой в 100 грамм, далее я покажу, что это гигантская масса, если использовать каждый атом. Но 100 граммовый зонд очень мал с точки зрения космических реактивных систем. Можно легко разработать такой зонд, способный двигаться со скоростью в 90% от максимально возможной - скорости света. При такой скорости зонд покроет расстояние до Проксимы Центавра за пять лет, а расстояние до Тау Кита или Эпсилон Эридана примерно за двенадцать лет. Поскольку радиосигналы путешествуют со скоростью света, мы сможем получить информацию о Проксиме Центавра только через девять лет после запуска, это гораздо меньше, чем пришлось ждать известий о Нептуне от Вояджера. Имея скорость 0,9с межзвездные зонды становятся правдоподобными. Проблема использования ракет для ускорения космических аппаратов до очень больших скоростей заключается в том, что само топливо тоже необходимо разгонять. Так что если мы говорим о ракетах, то почти вся их масса - это масса ракетного топлива. Решение очевидно: то, что, разгоняет космический корабль не должно быть его составной частью. Известно, что свет способен оказывать давление, и таким образом, космический корабль, состоящий в основном из гигантского паруса, может ускоряться светом, отраженным от него. НАСА изначально планировало послать такой зонд к комете Галлея, во время ее сближения с Солнцем в 1986 г., но отказалось от этой идеи ввиду отсутствия средств. В этом проекте предполагалось использовать Солнце в качестве источника света. Однако, для того, чтобы разогнать парус до скорости в 0,9с, энергии Солнца недостаточно, так что для межзвездного зонда таким источником мог бы служить очень мощный стационарный лазер. Проблемой при использовании лазера для ускорения межзвездного зонда является его торможение, когда цель уже достигнута. Американский физик Роберт Форвард разрешил эту проблему. Он предолжил сделать парус, отражающий свет лазера, из двух частей, которые разделяются, когда звезда-цель достигнута. Тогда одна часть паруса будет отражать свет обратно на другую часть, которая и содержит зонд и таким образом замедлять ее. Если рассмотреть предложение Форварда в деталях, получится следующее. Я полагаю, что масса полезной части зонда будет около 100 грамм, а общая масса, включая обе секции паруса, - 1 килограмм. Парус будет состоять из шестиугольника размахом в 8 километров, в центральной части которого будет находится другой шестиугольник, размером в 3 километра. В этой центральной части будет находится сам зонд. Внешняя часть будет замедлять скорость малого шестиугольника при приближении к месту назначения При использовании лазера мощностью в 250 мегаватт, зонд будет иметь ускорение 8g, при этом он достигнет скорости 0,9с через полтора месяца. Существуют детальные проекты лазеров мощностью в 10 гигаватт - такие лазеры предполагалось использовать в 80-е годы как часть стратегической оборонной инициативы президента Рейгана - так что 250-гигаваттный лазер вполне технически возможен. Нам также потребуется огромная линза Френеля, миллиард километров в диаметре, чтобы сфокусировать свет на пятне с размерами большого шестиугольника на расстоянии в 4,3 световых года, расстоянии до Проксимы Центавра. Хотя эти размеры линзы огромны (больше диаметра Солнца), она может состоять из тонкой петли на орбите вокруг Солнца, и таким образом ее масса будет всего 2 триллиона тонн, это размер среднего астероида. (Допплеровский сдвиг при скорости 0,9с составляет 4, так что замедление у звезды-цели будет немного меньше, чем 8g, если только не использовать более мощный лазер). Для того, чтобы обеспечить такой лазер энергией за счет солнечного излучения потребуется площадь в 40 квадратных километров; очевидно, что такой лазер, вместе с источником энергии тоже должен находится на околосолнечной орбите, как и линза. Поскольку сам зонд будет по видимому изготовлен в космосе, на своего рода космическом заводе, трудно точно оценить его стоимость. Однако, обычно стоимость зондов примерно равна стоимости конструкционных материалов, поскольку зонд фон Неймана могут изготавливать сами себя (они ведь самовоспроизводящиеся машины), а исходные затраты на исследования и разработки будут невелики, поскольку разумные самовоспроизводящиеся машины изнчально будут изготовлены для других целей. Мы знаем, что стоимость ядерной электростанции мощностью в 1 гигаватт составляет (в ценах 1993 года) около 1 миллиарда долларов. Линзы нужно будет изготавливать из металлов, но большие железно-гикелевые астероиды необходимых размеров существуют. Давайте предположим, что такой астероид стоит 10 миллиардов долларов. Если стоимость зонда примерно равна стоимости такого астероида, а лазер будет получать энергию от атомных электростанций, о которых говорилось, то стоимость межзвездного зонда будет составлять 260 миллиардов долларов, примерно в пять раз больше, чем стоимость программы Аполлон, и примерно половину той суммы, в которую оценивается пилотируемая экспедиция на Марс. Таким образом стоимость космического зонда с беспрцендентной миссией сравнима со стандартными сегодняшними межпланетными программами. Масса зонда и в самом деле может быть всего 100 грамм. Как я говорил выше, такая малая масса потребует, чтобы каждый атом зонда был бы использован. Дрекслер провел детальное исследование того, как при помощи нанотехнологии заставить работать каждый атом устройства. Он сделал вывод, что машины - универсальные кострукторы, возможны начиная с размеров в несколько миллиардов атомов, так называемые молекулярные универсальные конструкторы. Кроме того, в принципе возможно хранить один бит информации на один атом в расширенном массиве. Физики компании NEC в Японии уже открыли, как закодировать один бит на 20 атомов. 100 грамм материи содержат примерно 10^24 атомов, если это элементы, более легкие, чем железо, так что в таком зонде возможно будет закодировать 10^24 бит информации, и снабдить его соответствующими устройствами, чтобы он мог самовоспроизводится, используя те материалы, которые будут доступны в районе звезды назначения. Чтобы представить, что можно закодироватьв 10^24 бит, вспомним из предыдущей части, что разум человеческого уровня можно симулировать имея 10^15 бит. Полагая, что симуляция системы биологической поддержки такого существа потребует в 100000 раз больше памяти, симуляция целого человека может уложиться в 10^20 бит. Таким образом 100 граммовый зонд может нести симулцию целого города в 10000 человек! (Другая важная задача, которая стоит перед универсальным конструктором - это изменение конфигурации паруса во время перелета, чтобы уменшить площадь всего устройства. При скорости в 0,9с эффект от столкновения с пылью может быть очень серьезным. Даже столкновение с отдельными молекулами газа в межзвездной среде может разрушать парус на такой скорости). В ранних дискуссиях по поводу межзвездных путешествий одной из первых причин для разгона до скорости близкой к скорости света была необходимость использовать эффект релятивистского замедления времени. Для космического корабля, движущегося со скоростью 0,9с время идет примерно в половину медленне чем для тех, кто остался на Земле. Если корабль отправится к Проксиме Центавра и вернется обратно на такой скорости, на Земле пройдет 9,6 лет, и только 4,2 года для тех, кто будет на корабле. Эта необходимость в высокой скорости отпадает, если люди будут путешествовать как эмуляции: течение времени для них может быть симулировано с каким угодно замедлением по отношению ко времени вселенной. Такая симуляция может исполняться гораздо медленнее, чем та скорость, с которой существует жизнь на Земле, так что для тех людей, которые будут симулированы в космическом корабле путешествие займет несколько часов или дней. В наши дни, когда существует огромный дефицит бюджета сумма в 250 миллиардов долларов кажется невозможной. Однако, стоимость материалов относительно доходов падает экспоненциально с порядком в 50 лет за последние 150 лет. Это означает, что средний человек сегодня в 20 раз богаче, чем средний человек 150 лет назад. Если такая тенденция сохранится в течение следующих 400 лет, зонд стоимостью в 250 миллиардов долларов будет стоить людям того времени примерно как 80 миллионов долларов для нас теперешних. Сейчас в мире есть несколько сотен людей, чей доход больше, чем 80 миллионов долларов, так что я полагаю, что межзвездный зонд будет обязательно запущен в ближайшие несколько веков. Также очень вероятно, что предполагемые затраты снизятся. Когда я впервые начал заниматься исследованиями межзвездных путешествий, в начале 70-х годов, наиболее детально разработанным проектом межзвездного путешествия являлся проект Daedalus, выдвинутый британским межпланетным обществом в 1978 году. Зонд фон Неймана, используя предлагаемый в проекте носитель (ядерная реактивная ракета, которая ускорялась за счет взрывов сбрасываемых ею ядерных бомб) мог бы двигаться между звездами со скоростью в 0,16с и стоил бы 200 триллионов долларов, если исходит только из стоимости топлива. Зонд фон Неймана, использующий лазер Форварда и нанотехнологию может двигаться в шесть раз быстрее и стоит в тысячу раз меньше. Нанотехнология и лазерный парус были новыми идеями в 80-е. В 90-е может появиться еще больше идей, применение которых способно снизить стоимость. Новая реактивная техноллогия в комбинации с нанотехнологией может быть существенно дешевле. Ключевым в реактивном движении ракеты является получение энергии для выброса газа. Самым большим источником энергии является масса, как все знают из уравнения Эйнштейна E=mc^2. Химические реакции очень неэффективны: энергия при взрыве одной мегатонны ТНТ соответствует примерно 50 граммам массы. Даже ядерные реакции преобразуют меньше 1% массы в энергию. Однако, при аннигиляции материи и антиматерии вся масса переходит в энергию. Таким образом, ракета должна использовать аннигиляцию в качестве источника энергии. Антиматерия - это все еще экзотика, так что сначала скажем немного о ее свойствах. Согласно законам физики все материальное сущетвует в двух формах: частиц и античастиц. Античастица в точности такая же, как соответствующая ей частица, за исключением того, что она имеет противоположный электрический заряд. Например, электрон заряжен отрицательно, а его античастица, позитрон, имеет положительный заряд, но во всем остальном он абсолютно такой же, как электрон. Протон имеет положительный заряд, и таким образом, антипротон заряжен отрицательно. Точно так же, как протон в соединении с электроном дает один атом электрически нейтрального водорода, антипротон в соединении с позитроном дает электрически нейтральный антиатом антиводорода. В принципе могут быть созданы любые антиатомы, хотя до сегодняшнего дня в лаборатории создан только антигелий. Приложив усилия мы можем создать антиуглерод, антижелезо и так далее. Антиматерию трудно хранить, поскольку если частица приходит в контакт с античастицей они неедленно аннигилируют, превращаясь во вспышку радиации. Если смешать антиводород с воздухом, позитроны будут притягиваться к электронам атомов воздуха за счет разности в зарядах и аннигилировать. То же самое произойдет и с антипротонами. Тем не менее, существуют способы производства и хранения больших количеств антиматерии. Многие миллиарды антипротонов созданы и хранятся в ионных ловушках в лаборатории CERN в Женеве. Антипротоны сейчас можно продавать, стоимость их примерно 1 доллар за миллиард. Разработан детальный план для заводов, которые смогут производить миллиграммы антиводорода в год при стоимости в 1 миллион долларов за миллиграмм при широкомасштабном производстве. Форвард предложил использовать обычный водород в качестве газа, выбрасываемого ракетой, разогревая его путем добавления малых количеств антиводорода. Такой ракете с полезной нагрузкой в 100 грамм потребуется всего лишь 1,6 кг жидкого водорода и 3,6 миллиграмма антиводорода в качестве источника энергии, если исходить из того, что такая ракета разгонится до скорости 0,1с, проделает путь к звезде назначения и там затормозится. Предполагая, как и выше, что стоимость зонда складывается в основном из стоимости конструкционных материалов, такой зонд обойдется всего в 4 миллиона долларов, почти вся сумма будет затрачена на антиводород. В настоящее время существует по крайней мере миллион человек, которым по силам такие затраты. И покупатель сможет держать свой межзвездный зонд фон Неймана на собственной ладони! Сейчас существуют очень детальные разработки ракеты Форварда на антиматерии, и некоторые лаборатории объявили, что они начали эксперименты по изготовлению такого аппарата. Мы сможем запустить межзвездный зонд со скоростью 0,1с уже к концу этого десятилетия, если у нас будут необходимые компьютерные технологии, универсальные конструкторы молекулярных размеров и компьютеры атомных размеров. Исходя из темпов развития нанотехнологии, я полагаю, что необходимые компьютерные технологии будут существовать к тому времени, когда мы получим компьютер, способный пройти тест Тьюринга. Как показано в предыдущей части, это должно произойти к 2030 году. Зонд фон Неймана может быть запущен в середине следующего века. Такому зонду потребуется всего пять или десять лет после запуска, чтобы достичь звезд. Вопрос в том, сколько времени ему понадобится, чтобы изготовить копию самого себя? Если мы сравним зонд фон Неймана с единственной известной нам самовоспроизводящейся машиной, человеком, последнему требуется около двадцати или тридцати лет, чтобы воспроизвести себя. Если мы сравним зонд фон Неймана с целой технической цивилизацией, то ей понадобилось около трехсот лет, чтобы превратить Соединенные Штаты в индустриальную державу. Большая часть этого времени была потрачена на разработку технологических решений, а не самих машин. Владея необходимыми технологиями, Германия и Япония воссоздали свою промышленность всего за 10 лет после второй мировой войны, пользуясь при этом минимальными инвестициями извне. Уже упомянутый физик Джерард О'Нейл вычислил, что космические колонии могут быть самодостаточными и воспроизовдить себя менее чем за сто лет. Я считаю, что таким образом есть все основания полагать, что зонд фон Неймана может начать изготовлять копии самого себя в течение пятидесяти лет после достижения звезды-цели. Если он разошлет эти копии к звездам в радиусе 10 световых лет вокруг себя, колонизация галактики может происходить со скоростью в 10 световых лет в 60 лет, или 1/6 светового года в год. Поскольку наша галактика имеет диаметр около 100000 световых лет, потребуется около 600000 лет, чтобы колонизовать ее. Эта колонизация может начаться уже в середине следующего столетия. СУЩЕСТВА, ПУТЕШЕСТВУЮЩИЕ В КОСМОСЕ НЕИЗБЕЖНО ЗАСЕЛЯТ И БУДУТ КОНТРОЛИРОВАТЬ ВСЮ ВСЕЛЕННУЮ. Ближайшая к нам крупная галактика, туманность Андромеды, находится на расстоянии в 2,7 миллиона световых лет, так что биосфера может заселить ее по прошествии 3 миллионов лет, используя зонды со скоростью 0,9с, описанные в предыдущем разделе. Ближайший клстер галактик в созвездии Девы находится на расстоянии в 70 миллионов световых лет. В обоих случаях время воспроизводства зондов мало по сравнению со временем путешествия, даже при скорости в 0,9с, так что его можно проигнорировать. При рассмотрении еще более удаленных галактик при вычислении средней скорости зонда необходимо учитывать расширение вселенной. Закон Хаббла говорит, что чем дальше галактика от Земли, тем быстрее она от нас удаляется. Следовательно, космический аппарат, запущенный с данной скоростью относительно Земли будет иметь меньшую скорость относительно удаленной галактики, когда он ее в конце концов достигнет. Я показываю в приложении для ученых, что отношение момента количества движения космического корабля относительно Земли к моменту количества движения его в удаленной галактике равно отношению радиусов вселенной в момент достижения кораблем галактики и в момент его запуска. Я покажу в главе IV, что маскимальное значение этого отношения будет около 300000 в момент достижения вселенной ее маскимального размера (наименьшее значение этого отношения равно 3000). Верхняя граница в 300000 предполагает, что если корабль должен достигнуть противоположной границы вселенной в момент ее наибольшего расширения, имея при этом скорость 0,9с (скорость 0,9с означает, что общая энергия равна примерно его удвоенной массе), для этого потребуется начальная энергия в 600000 раз больше массы корабля. Я показываю в приложении для ученых, что такой корабль технически возможен, если использовать аннигиляционную ракету. Для зонда весом в 100 грамм начальная масса ракеты должна быть 10 миллиардов тонн, половину из них составляет антиматерия. Такое количество антиматерии конечно недешево. Пристоимости 1 миллион долларов за миллиграмм, миллиард тонн будет стоить 10 триллионов триллионов долларов, что примерно в миллиард раз превосходит существующий валовый национальный продукт всего человечества. Посылка такого зонда к противоположной границе вселенной потребует ресурсов целой звездной системы. Но это может быть сделано. Лучшей стратегией, конечно является посылка зондов от одной галактики к другой, а не прямо к противоположной границе. Однако, это становится все более и более трудным по мере того, как вселенная расширяется и галактики удаляются друг от друга. В приложении для ученых показано, что во вселенной, размер которой будет в момент наибольшего ее расширения составлять 3000 – 300000 раз от существующего, противоположная граница будет находится на расстоянии от 1 до 10 терапарсеков (терапарсек равен 10^12 парсек). Вселенная достигент этого состояния через 5*10^16 - 5*10^18 лет спустя (в собственном времени). За это время материальный состав вселенной существенно изменится, как показано в следующей таблице. ВАЖНЕЙШИЕ МОМЕНТЫ ИСТОРИИ БУДУЩЕГО. Событие Время (годы) Солнце расширяется и поглощает Землю 7*10^9 Галактики испаряются из кластеров 10^11 Звезды утрачивают форму; все 10^12 массивные звезды становятся нейтронными звездами или черными дырами Наиболее долгоживущие звезды расходуют 10^14 все свое топливо и становятся белыми карликами Мертвые планет отделяются от мертвых звезд 10^15 при звездных столкновениях Белые карлики остывают до 5 К и становятся 10^17 черными карликами Нейтронные звезды остывают до 100 К 10^19 В данной таблице предполагается, что жизнь не будет влиять на эволюцию материи. На самом деле, конечно же она будет влиять. Например, вместо того, чтобы позволить Солнцу испарить Землю через семь миллиардов лет, наши потомки могут увести планету целиком в космическое пространство и использовать ее для экспансии биосферы. (Дайсон показал, что увести планету из солнечной системы возможно, если у вас есть несколько миллионов лет для этого). Позволив природе идти своим путем и уничтожить Землю означало бы разрушить оставшуюся на ней биосферу без всякой цели. если же наоборот, мы уведем Землю в космос, ее материалы могут быть использованы для создания колоний О'Нейла, где жизнь будет продолжаться. В этом случае будет возможна более населенная и более разнообразная биосфера, чем если Земля останется нетронутой, потому что на Земле жизнь может использовать только атмосферу и первые несколько километров земной коры. Если же Земля будет уведена в космос, весь ее материал может быть обеспечить существование жизни. Это справедливо и в отношении других планет и даже самого Солнца. Очень много времени спустя, сначала звездная система, потом галактика, потом кластер галактик и наконец вся материальная вселенная будут использованы расширяющейся биосферой. Помните, что в глобальном масштабе времени у жизни нет выбора: она должна использовать естественные ресурсы, чтобы выжить. И я полагаю, что она это сделает. Луч света, посланный с Земли, находящейся в начале вселенной достигнет противоположной стороны последней в момент ее максимального расширения, так что космический аппарат, запущенный через несколько миллиардов лет и имеющий энергию, о которой говорилось выше, прибудет в ту же точку немногим позже светового луча, сразу после того, как вселенная начнет сокращаться. Я полагаю, что полное заселение вселенной будет технически возможно к этому времени при использовании технологий, которыми мы будем обладать в ближайшие полвека. Компьютерная симуляция биосферы, завоевывающей вселенную изображена на рис. II.3, II.4, II.5. На первом рисунке показана вселенная через 10^16 лет. Она примерно в 3 тысячи раз больше, чем сейчас. В таком масштабе размеры вселенной в настоящее время соответствуют точке в конце этого предложения. Вселенная представлена в виде двухмерной сферы, Земля расположена на ее северном полюсе. Противоположная сторона вселенной - точка-антипод таким образом находится на южном полюсе. Черный круг на сфере показывает положение вспышки света, посланной с Земли в 1993 году. Этот свет достиг экватора сферы, то есть за 10^16 лет он покрыл только половину расстояния от Земли до точки-антипода. Зачерненная область обозначает биосферу, которая к этому времени поглотила около одной трети вселенной. Второй рисунок показывает вселенную через 10^17 лет от настоящего времени. Она все еще расширяется, и стала больше, чем на предыдущем рисунке. Жизнь поглотила теперь около трех четвертей вселенной. Луч света, оставивший Землю 10^17 лет назад все еще не достиг точки-антипода, хотя и близок к ней. Расширяющаяся биосфера немного отстает от луча. Третий рисунок показывает вселенную спустя 10^18 лет от настоящего времени. Вселенная продолжает расширяться, и стала больше, чем на предыдущем рисунке, но она уже очень близка к своему максимальному размеру. Жизнь поглотила около 90% вселенной. Свет, пущеный с Земли 10^18 лет назад уже достиг точки-антипода. На четвертом рисунке показана вселенная 10^19 лет спустя. Она уже миновала стадию максимального расширения и теперь сокращается. Теперь она меньше, чем на предыдущем рисунке. Жизнь полностью завоевала вселенную. Черный круг все еще обозначен, как и на предыдущих рисунках он изображает луч света, посланный с Земли в 1993 году, но теперь он дошел до точки-антипода и отразился обратно к Земле. Следующий вопрос состоит в том, сможет ли жизнь получить контроль над вселенной, когда окончательно завоюет ее? Говоря иначе, будут ли наши потмки направлять вселенную, или она будет направлять их? Ответ состоит в том, что они могут в будущем контролировать движение целой вселенной. Механизм, которым они будут пользоваться - это хаос в уравнениях, описывающих динамику вселенной. |
|